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ABSTRACT

Traditional landing gear consists of rigid linkages
with dampers. They require a flat surface to func-
tion. In unstructured environments such as lunar
craters or the martian polar region, these conditions
are not always met. In this work, we equip a conven-
tional quadrotor with four continuously deformable
passive landing limbs with a logarithmic spiral ge-
ometry. By choosing the right geometric design as
well as tension on the tendon running through the
length of the limbs, we ensure that the limbs sup-
port the overall weight while passively complying to
the environment. Hence, no active control during the
landing process is needed in order to adapt to irreg-
ular ground. In a set of experiments, these compli-
ant limbs showcase their ability to adjust to uneven
landing terrain while maintaining the horizontal atti-
tude of the base vehicle. Overall, this work highlights
the future potential to access more challenging envi-
ronments, leveraging physical compliance for robust
landings.

1. INTRODUCTION

Human presence on non-terrestrial bodies has at-
tracted sustained interest over the years. An
ongoing program that caters to this objective is
ARTEMIS [1]. It aims to reestablish human presence
in the moon, therefore the need for robotic solutions
for exploration is necessary. They have been proven
to be one of the key enablers in the past to take on
risky tasks. Most recent successful robots are the
Curiosity [2] and Perseverance [3] rovers, and the In-
genuity [4] helicopter. In the future, robotic systems
have the potential to help prepare for long-term hu-
man presence on the surface of the moon and even
on other celestial bodies.

One of the significant challenges in transporting
these robotic systems into the location of interest
is the landing procedure. Landing on uneven terrain

Figure 1: A conventional quadrotor equipped with
passively deforming landing gear demonstrates the
ability to comply with uneven terrain allowing the
main body to maintain a vertical attitude. Each of
the four landing arms adjusts the shape to match the
environment by deforming passively according to the
external forces.

is particularly challenging [5]. Robotic moon landers
use thrusters as propulsion due to the lack of atmo-
sphere. Thrusters inherently provide a unidirectional
force. Hence, to move in the lateral direction, the
system has to rotate such that the thrusters provide
a lateral force component. This coupling of Degrees-
of-Freedom (DoFs) is called “underactuation” and
results in a lack of control authority in the lateral
direction while landing horizontally. Landing on un-
even ground causes tilting, and the lack of control
authority increases the possibility of landing failure
which can lead to the failure of the whole mission.

In this work, we show the role of compliant land-
ing gear in allowing systems to handle rough terrain
passively. By embodying intelligence in the physical
design of the landing gear, the system is resilient to
landing shock. It dampens vibrations during land-
ing and adapts to uneven terrain without the need
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for active control. To showcase these capabilities, we
design a bio-inspired compliant limb with adjustable
stiffness characteristics as pictured in figure 1. As
proof of concept, we further mount the landing gear
on an underactuated quadrotor. We then execute
various drop tests to showcase the system’s capabil-
ity to maintain a horizontal orientation throughout
the landing procedure.

2. DESIGN

Drawing inspiration from the gripper design of Wang
et al. [6], this work proposes to use a logarithmic
spiral geometry, typically found in nature [7], for
the design of the compliant limbs. This design al-
lows curling adaptation of the mechanism’s longitu-
dinal length to unknown terrain topology, and object
shapes. In its fully curled state, its description in
polar coordinates – its radius r as a function of the
angle ϕ – defines the spiral as:

r = aekϕ , ϕ ϵ R, a > 0, k ̸= 0. (1)

where a and k are its amplitude and pitch, respec-
tively. Here, we manufacture the compliant structure
in a monolithic fashion, without using an interme-
diate elastic layer, exploiting the flexible material’s
properties. This significantly simplifies the manufac-
turing process as it allows for full-structure printing.

2.1. Fabrication

The design of each landing limb prioritizes passive
compliance and makes them nearly continuously de-
formable. The structure material was then chosen to
be thermoplastic urethane (shore hardness of 95A,
density of 1 g/cm3). The employed filament is vac-
uum dried for nine hours at 70◦C. Mounting struc-
tures were made of polylactic acid for ease and speed
of printing.

We use two 1.2mm ultra-high molecular weight
polyethylene cords for the tendons. Each limb has
two tendons in distal lateral ends running through a
tapered straight line along its length. The tendons
provide the possibility to pretension the limb to a
desired configuration. Besides the material charac-
teristics, the effective cartesian stiffness of the limbs
is also dependent on its current configuration. Thus,
the pre-tension of the tendons allows for fine-tuning
the limbs’ stiffness for the overall system mass. A
render of the CAD model is in figure 2.

2.2. Characterization

We characterize the newly manufactured structure
using a 20N Zwick Static Test Machine to under-
stand the relation between the force applied to the

Figure 2: Render of the fabricated limb.

tendon and the End-Effector (EE) displacement.
The tendon attached to one side of the structure is
put under tension in the fully neutral position. Fig-
ure 3 shows the resulting hysteresis loop of stiffening
the tendon and releasing it. Between 10N to 60N
we observe a linear relation, thus, for the sake of
conciseness, the rest of this work only considers this
restricted range.

Figure 3: Force-tendon travel graph of a newly man-
ufactured structure. The peak force is experienced
when the tip is on the same level of the base.

2.3. Component Sizing

The employed quadrotor (Holybro X500 V2) has a
payload capacity of 1 kg. With a generous safety
margin, we assume that 60% of this will be used for
onboard computer and other electronic components
needed for flight. Hence, there is a 400 g allowance
for the limb assembly, amounting to 100 g per limb
assembly. Table 1 shows the resulting specifications.

3. MODELLING

Pulling the tendon creates tension on the lateral sides
of the structure, applying bending moments on the
pivot points of each unit along the frontal midline of
the structure. These result in stresses that change



Table 1: System Specifications

Quadrotor Model Holybro X500 V2

Payload Capacity ∼1 kg

All-up-weight 1012.8 g (w/o battery)

Limb Weight 51.20× 4 = 204.8 g

Limb & mountings 95.45× 4 = 381.8 g

Figure 4: An example of a piecewise-affine curve de-
scription. Each reference frame Si is connected via
an affine curve.

the configuration, which consequently increases the
effective cartesian stiffness in the EE. To choose a
desired tendon tension this section proposes a model
that relates said tendon tension to the limb configu-
ration, as well as limb configuration to EE stiffness.
We propose to model the limbs using techniques from
continuum robotics, i.e., model the limb as a concate-
nation of n piecewise affine curves – curves of linearly
changing curvature – as introduced in [8] and [9].

3.1. Forward Kinematics

The base reference frame S0 is followed by one refer-
ence frame at the tip of each segment Si as depicted
in figure 4.

Since the limbs are inextensible and only bend in
one axis, each segment i is fully determined by its
curvature ci. For each actuated segment, we choose
one affine description of the curvature in the form of

ci(s) = ci;0 + ci;1s, (2)

where s ∈ [0, 1] parametrizes the position along the
arc length of the segment. The bending angle αi at
some arc length s along the segment with respect to
the previous frame is then the integral of the curva-

ture

αi(s) =

∫ s

0

ci(s) = ci;0s+
ci;1
2

s2, (3)

The overall configuration q ∈ R2n is then fully de-
fined by the description of the limb’s curvature

q = [c0;0 c0;1 · · · cn;0 cn;1] , (4)

The forward kinematics - the EE position r as a func-
tion of the configuration variables - then follow as
in [9]:

FK(q) = H
(
Πn

i=1T
i
i−1(q)

)
, (5)

where Ti
i−1(q) is the homogeneous transformation

matrix of reference frame Si with respect to refer-
ence frame Si−1 and H is the (linear) transformation
of the homogeneous coordinates to cartesian coordi-
nates.

3.2. The Jacobian

The systems EE-Jacobian J(q) is a matrix collecting
all partial derivatives of the forward kinematics:

J(q) =
[

∂r
∂q0;0

∂r
∂q0;1

· · · ∂r
∂qn;0

∂p
∂qn;1

]
, (6)

where r denotes the EE position in cartesian space
with respect to the base reference frame. Using the
Jacobian we can derive a simplified dynamical sys-
tem under the influence of actuation and gravity.

3.3. Dynamics

In general, the Partial Differential Equation (PDE)
that fully describes the behavior of a robotic system
takes on the form of the manipulator equation, fol-
lowing the Lagrangian formalism:

M (q) q̈+C (q, q̇) q̇+D (q) q̇

+G (q) +K (q) = A (q) τ
(7)

where M (q) is the system’s mass-inertial matrix,
C (q, q̇) collects the Coriolis terms, D (q) the damp-
ing terms, and G(q),K(q), the gravity and stiffness
terms respectively while A(q) maps the control in-
put into generalized forces on the states. However,
in this work, the focus is on the steady-state config-
urations of the system, i.e., q̇ = 0 and q̈ = 0. In
steady state, the following simpler equation holds:

G (q) +K (q) = A (q) τ (8)

I.e., to fully define the steady state equation under a
given tendon tension, only the G, K, and A need to



be known. First, we derive K. The potential energy
stored in the stiffness of a segment is

UE;i =

∫ 1

0

k

2
c2i (s)ds (9)

where k is the stiffness constant of the material and is
assumed to be constant along the arc length. Form-
ing the derivative with respect to the state yields the
stiffness contribution K(q) onto the state

Ki(q) =
d

dq
UE:i = k

[
1 1/2
1/2 1/3

]
︸ ︷︷ ︸

Ki=const

q (10)

where in the rest of this work the constant factor in
front of the state is referred to as Ki. Furthermore,
we derive the gravity contribution G(q) by summing
up the contributions of all infinitesimal components
of a segment

G(q) =

∫ 1

0

ρ(s)JT (q, s)gds (11)

≈
k∑

i=0

m

k
JT (q, s)g (12)

where ρ is the material density, J(q, s) is the jacobian
at arc length s, g is the gravitational acceleration
vector, m is the total mass, and k is the number
of discrete points used to approximate the integral
numerically.

Lastly, the actuation mapping A(q) ∈ R2×n follows
the derivation in [10] of a torque acting on the tip of
the segment and results in

A(q) =

[
1 · · · 1
1
2 · · · 1

2

]
(13)

Albeit being simpler, equation 8 is transcendental
and, in general, has no closed-form solution for q.
As proposed in [9], we introduce a damping term to
form the following dynamic function that allows us
to simulate the system until convergence:

q̇ = D−1
∗ (A (q) τ −G (q) +K (q)) (14)

where D∗ is an arbitrary damping matrix, heuris-
tically chosen to yield fast convergence. Note that
equation (14) yields the same steady-state as equa-
tion 8.

Since each of the designed limbs is equipped with
one tendon, it is sufficient to model and simulate the
limbs with one affine curve segment. Figure 5 show-
cases a selection of the steady-state configurations of
a single-segment model for various constant control
inputs.

Figure 5: Various steady state configurations of
a single segment affine curve continuum robot of
unit length for ten constant control inputs u =
[0, · · · , umax]Nm.

Figure 6: Elements of the cartesian stiffness matrix
of the EE, normalized to its maximal value, in dif-
ferent steady-state configurations given various con-
stant control inputs u. The dashed line indicates the
chosen configuration.

3.4. Effective cartesian stiffness

While the bending stiffness of the continuum arm is
modeled as a constant, the resulting cartesian stiff-
ness of the EE depends on the limb configuration q.
At any given configuration, the resulting EE stiffness
matrix in cartesian space KC is

KC(q) =
(
J(q)KJT (q)

)−1

(15)

Figure 6 showcases the elements of the resulting stiff-
ness matrix in various steady-state configurations
under the influence of constant control inputs.

For the purpose of compliant landing, we choose the
configuration with minimal stiffness in z, which still
permits the configuration to be such that the EE is



Table 2: Trials and Failures during each experiment

Configuration Trials Failures

Landing Gear No Object 12 5

Landing Gear Object 10 10

Limbs No Object 10 0

Limbs Gear Object 13 0

the lowest point of the limb. Figure 6 indicates the
chosen configuration. Note that this is also the last
simulated configuration in figure 5.

4. RESULTS

To validate their capability to adjust to uneven
ground, we subject the system to repeated drop tests.

As illustrated in figure 7, the compliant landing gear
deforms around the uneven ground topology while
maintaining a close to horizontal orientation of the
base, whereas the conventional landing gear fails to
adapt and causes the system to tip over.

Figure 8 shows the roll, pitch, and system height over
repeated drop tests from one meter height on a flat
ground, as well as with an object. We consider a
landing a failure if the system tips over during the
landing process, i.e., reaches a steady state with a roll
or pitch angle of more than 45◦. Table 2 displays the
number of trials and failures for each of the configu-
rations. The system with conventional landing gear
fails in 42% of the trials on flat ground and in 100%
of the trials with the object. On the other hand, the
system with compliant landing gear fails in none of
the trials throughout all experiments.

Since the compliant limbs deform during the landing,
they further dissipate energy, i.e., given the same im-
pact velocity, the system with compliant landing gear
is decelerating over a longer period, thus experienc-
ing smaller peak accelerations. In the experimental
setup, the rigid landing gear is longer than the com-
pliant landing gear, thus striking the ground earlier
while reaching a lower maximal velocity. However,
when comparing the maximum velocity to peak ac-
celeration ratio over all non-object trials, we observe
a decrease of 33% percent. This implies that at the
same impact velocity, the compliant landing gear re-
duces the experienced peak acceleration by a third.

5. CONCLUSION

This work proposes to use compliant landing gear
in order to increase the robustness of landing ma-
neuvers of airborne, underactuated robotic systems,

such as planetary landers. This work introduces the
design of bio-inspired compliant limbs and models
them as an affine curve, actuated by one fixed tendon
that provides tension to the system. By varying the
tension of the tendons, the configuration and conse-
quently the system’s cartesian stiffness at the EE can
be tuned to fit the requirements of the landing pro-
cedure. As proof of concept, we mount these limbs
on a similarly underactuated quadrotor and perform
a set of drop tests. It shows that the compliant limbs
adapt to the uneven environment in each trial while
the conventional landing gear fails and tips over in
all trials with an object and 40% of the trials on flat
ground. Furthermore, this work shows that, given
the same impact velocity, the designed landing gear
reduces the experienced peak acceleration by a third.

In future work, additional tendons in each limb
would allow to not only tune the stiffness at the EE
in one configuration but to shape the curve of stiff-
ness elements throughout the entire landing process.
These tendons could then be fixed to keep the system
fully passive but could also be driven by actuators to
adjust the stiffness online, such as the aerial compli-
ant manipulators in [11,12].

REFERENCES

1. M. Smith, D. Craig, N. Herrmann, E. Mahoney,
J. Krezel, N. McIntyre, and K. Goodliff, “The
artemis program: An overview of nasa’s activities
to return humans to the moon,” in 2020 IEEE
Aerospace Conference, pp. 1–10, 2020.

2. R. Welch, D. Limonadi, and R. Manning, “Sys-
tems engineering the curiosity rover: A retrospec-
tive,” in 2013 8th International Conference on
System of Systems Engineering, pp. 70–75, 2013.

3. N. Mangold, S. Gupta, O. Gasnault, G. Dromart,
J. Tarnas, S. Sholes, B. Horgan, C. Quantin-
Nataf, A. Brown, S. Le Mouélic, et al., “Perse-
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